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Explicit dynamic relaxation is an efficient tool that has been used to solve problems involving highly non-
linear differential equations. The key feature of this method is the ability to use explicit dynamic algo-
rithms in solving static problems. Few attempts have been made to date to apply this technique in con-
ventional geotechnical engineering. In this study, an algorithm that incorporates the application of a
stiffness dependent time step scheme is proposed. The algorithm has been successfully used to solve
2D and 3D non-linear geotechnical engineering problems. To calibrate the developed algorithm, numer-
ical simulations have been conducted for a strip and square footings supported by Mohr–Coulomb mate-
rial. Performance of four different types of brick elements used in collapse load calculation is examined in
terms of convergence speed and accuracy. In addition, the role of employing adaptive time steps in reduc-
ing the number of iterations needed for convergence is also evaluated.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With the continuous increase in computing power, more com-
plex engineering problems are being considered in computational
mechanics. However, the cost of solution and storage requirement
increases dramatically for large scale three-dimensional (3D) prob-
lems. This has lead to an increased interest in parallel computing
techniques making direct solvers (in static analysis) and implicit
time integration methods (in dynamic analysis) less competitive
compared to the iterative solvers and explicit or mixed time inte-
gration procedures. In addition, the development of combined
numerical methods (such as finite/discrete element) necessitates
the use of consistent integration schemes for both finite and dis-
crete element domains. Since explicit methods are commonly used
in discrete element analysis, they are therefore needed for the
analysis of the finite element domain.

Over the past few decades, different static problems have been
successfully analyzed using the dynamic relaxation (DR) methods
(e.g. Felippa [1] and Underwood [2]). In DR methods, the response
of a given structure is damped until it reaches a steady state. The
convergence speed of the explicit DR methods is generally propor-
tional to the ratio of the highest to the lowest eigenvalues of the
stiffness matrix [3]. Although the performances of implicit versus
explicit methods is generally hard to judge, for a 3D homogenous
finite element mesh, this ratio is proportional to N and N2/3 for
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implicit and explicit methods, respectively [3]. Furthermore, Xie
[4] reported that the unconditional stability of implicit methods
in linear analysis is no longer valid in non-linear analysis. The reli-
ability of the DR solutions is usually ensured by using integration
parameters that are adaptively changing throughout the analysis
to account for the non-linear effects. Although a small time step
is required to ensure numerical stability, the computational cost
per time step is generally low.

Oakley and Knight [5] developed an adaptive DR for non-linear
hyperelastic structures. An adaptive time step and mass propor-
tional damping coefficient are calculated based on global tangent
stiffness. Sauvé and Metzger [6] applied the DR to solve geometri-
cally non-linear structural engineering problems with creep mate-
rial. A modification to the mass proportional damping is developed
by Metzger [7] to avoid the deleterious effects of sudden changes
in the damping coefficient. Shoukry et al. [8] used the DR with con-
stant time step to study the response of the pavement under ther-
mal loading.

Given the numerical efficiency of the DR methods, attempts
have been made to solve geotechnical engineering problems
involving highly non-linear material models. Siddiquee et al. [9]
proposed an explicit dynamic relaxation technique to simulate
the bearing capacity of a strip footing on sand under plane strain
condition. The time step was kept constant and several techniques
were proposed to maintain the stability of the integration (e.g.
load control, arc length control and displacement control). How-
ever, the above technique requires a careful user control to main-
tain the stability of the analysis. Tanaka [10] applied the same
techniques to study the response of a single element under plane
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strain condition. The simulations were carried out assuming plane
strain and using a fine mesh of linear quadrilateral element.

As the stress state violates the failure criteria, the element stiff-
ness can no longer be calculated purely based on elastic formula-
tion. The stiffness of the element often decreases significantly
when plasticity occurs. Since the time step depends on the element
stiffness, the time step can be adjusted as plasticity develops
resulting in accelerated steady state.

In this study, a modified framework of dynamic relaxation
applicable to plastic material is proposed. The time step is calcu-
lated based on the element consistent tangent stiffness that de-
pends on the constitutive model. The algorithm is validated by
simulating the bearing capacity of a strip and square footings.
The effect of the adaptive time step calculated based on element
consistent tangent stiffness is also evaluated. In addition, the per-
formance of several solid elements commonly used in 3D analysis
is examined.

The developed algorithm and the finite element library were
implemented as a finite element package into the Discrete Element
Open Source code YADE [11] using C++ programming as part of the
ongoing development of a generalized discrete-finite element
framework for geotechnical applications.
2. Governing equations and force description

The developed algorithm was based on the adaptive dynamic
relaxation (ADR) method proposed by Oakley and Knight [5] with
the addition of a simple plasticity model. The spatial discretization
of a damped structural system can be written as

Kxþ C _xþM€x ¼ P ð1Þ

where K, C and M are the stiffness, damping and the mass matrix,
respectively, x represents the displacement vector and P is the
external force vector. The internal force vector F can be assembled
on an element by element basis.

The solution of Eq. (1) was obtained using an explicit time inte-
gration technique. In this study the central-difference scheme was
adopted as it has been proven to be computationally efficient [4].
To avoid the need for the assembly and factorization of the global
matrices, a mass proportional damping (cM) together with a diag-
onal mass matrix (M) obtained using mass lumping were em-
ployed. The lumped mass matrix can also increase the numerical
stability of the explicit time integrator [12]. The errors introduced
by the lumped masses are compensated for by the central differ-
ence operator [13]. Eq. (1) can therefore be written as

Kxþ cM _xþM€x ¼ P ð2Þ

where c is the damping coefficient for mass proportional damping.
3. Time step equation

In the central difference method, the velocities are defined at
the mid point of the time step, and the approximation for the tem-
poral derivatives is given as:

_xnþ1=2 ¼ 1
Dt
ðxnþ1 � xnÞ ð3Þ

€xn ¼ 1
Dt
ð _xnþ1 � _xnÞ ð4Þ

where Dt is the fixed time step increment. There are generally two
options to derive an incremental relationship: (1) assuming con-
stant acceleration over Dt; (2) assuming constant velocity over
Dt. In this study, the latter assumption was adopted and the veloc-
ity was taken as the average value over Dt:
_xn ¼ 1
2
ð _xnþ1=2 þ _xn�1=2Þ ð5Þ

Substituting Eqs. (3)–(5) into Eq. (2), the expressions for
advancing the velocity and displacement vectors, respectively,
can be written as:

_xnþ1=2 ¼ 2� Dtc
2þ Dtc

ð _xn�1=2Þ þ 2Dt
2þ Dtc

M�1ðPn � FnÞ ð6Þ

xnþ1 ¼ xn þ Dt _xnþ1=2 ð7Þ

where Fn and Pn are the internal and external force vectors, respec-
tively, at time step increment n. The inverse matrix of M is trivial
since M is diagonal. For the first time step, the velocity can be cal-
culated as

_x1=2 ¼ �Dt
2

M�1ðP0 � F0Þ þ 1
2
ð2� DtcÞ _x0 ð8Þ

Since the objective of the ADR is to determine the steady state
solution of the pseudo-transient response, it is important to deter-
mine the stability condition (or convergence criterion) when the
system is static. The stability condition is determined considering
the relative errors in the body forces from one step to the next

e ¼ kF
n � Fn�1k
kFnk 6 tol ð9Þ
4. Stability of time steps

For the stability of the central difference integrator, the time
step must be smaller than a limit derived based on the well known
Courant–Friedrichs–Lewy condition.

Dt 6
2ffiffiffiffiffiffi
km
p ð10Þ

where km is the maximum eigenvalue. An upper bound to the max-
imum eigenvalue can be obtained from Gerchgorin’s theorem as:

km 6 max
Xn

j¼1

jKijj
Mii

ð11Þ

where Kij is an element of the element consistent tangent stiffness
matrix. Kij is derived from the return mapping algorithm described
in the constitutive modeling section. It should be noted that both
the mass (either real or virtual) and time step size are not indepen-
dent. Adjusting the mass can lead to inaccurate results particularly
when time dependent loading is applied. Thus the mass has been
fixed in the proposed algorithm and the time step has been adjusted
based on the changes in the element consistent tangent stiffness.

5. Optimal convergence

Rapid convergence is usually obtained when the ratio of the
maximum to minimum eigenvalues is as small as possible. As
shown by Oakley and Knight [5], the optimal convergence condi-
tion is reached if

c 6 2
ffiffiffiffiffi
k0

p
ð12Þ

where k0 is the minimum eigenvalues. To estimate the minimum
eigenvalue, the mass-stiffness Rayleigh quotient can be used such
that

k0 ffi
ð _xn�1=2ÞT Sn _xn�1=2

ð _xn�1=2ÞT M _xn�1=2
ð13Þ

where S is the lumped stiffness matrix for linear problems. For non-
linear problem, Sn is determined as follows



Fig. 1. Flow chart for the adaptive explicit dynamic relaxation.
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Sn ffi Fn � Fn�1

Dt _xn�1=2 ð14Þ

No additional parameters are required as the algorithm auto-
matically adjusts the optimal damping coefficient and the time
step based on the changes in the element consistent tangent
stiffness.

6. Constitutive model

Plasticity models in geomechanics can be integrated using
either explicit integration (forward Euler) or implicit integration
(backward Euler). The first is simple to be implemented and gener-
ally is employed for element-base analysis. However, if the mate-
rial is highly non-linear, much iteration may be needed to return
the stress state to the failure surface. Moreover, as the stress state
violates the failure criteria, the element stiffness can no longer be
calculated purely by elastic formulation. Since the element stiff-
ness decreases significantly when plasticity develops and the time
step depends on the element stiffness (see Eq. (10)), the time step
can therefore be increased resulting in that the steady state condi-
tion can be achieved faster. The closest point projection method
(CPPM) with consistent elastoplastic modulus was utilized at the
Gauss points to calculate the element tangent stiffness. The proce-
dure to derive the consistent tangent stiffness is described below.

In CPPM, the increments of plastic strain are calculated at the
end of each iteration step. Similarly, the yield condition is enforced
at the end of the step (Simo and Hughes [14]). The integration
scheme is written in incremental form as

dep ¼ dðDkÞqþ Dkdq ð15Þ
dr ¼ Deðde� depÞ ð16Þ
df ¼ aT dr ¼ 0 ð17Þ

where dep, dr and de is the incremental plastic strain, incremental
stress and incremental total strain, respectively, Dk is the plastic
multiplier.

a ¼ @f
@r

� �
ð18Þ

where f is the yield function.

dq ¼ @q
@r

� �
dr ð19Þ

where q is the derivative of the plastic flow potential function g
with respect to stress.

Plastic multiplier can be updated consequently at iteration
(k + 1)th based on iteration kth

Dkkþ1 ¼ Dkk þ dkk ð20Þ

where dkk is the increment in Dk at k iteration. dkk is calculated as
follows

dkk ¼ f k � aðkÞT RðkÞrðkÞ

aðkÞT RðkÞqðkÞ
ð21Þ

where

Rk ¼ I þ DkkDe @q
@r

� �k
" #�1

De ð22Þ

and

rk ¼ �ep þ ep
accumulated þ Dkq ð23Þ

where ep
accumulated is the total plastic strain accumulated at the previ-

ous load step.
Substituting Eq. (15) into (16) with condition given by Eq. (17)
and solving for d(Dk) gives

dðDkÞ ¼ aT Rde
aT Rdq

ð24Þ

Substituting into Eq. (16) gives

dr ¼ Dcde ð25Þ

where Dc is the consistent elastoplastic modulus calculated as

Dc ¼ R� RqaT R
aT Rq

ð26Þ

To approximate the consistent stiffness of the element, the B
matrix derived from the shape function of the element was em-
ployed. The element consistent tangent stiffness Kc

e then can be
determined as:

Kc
e ¼

Z
Xe

BT DCBdX ð27Þ

The flow chart used in the development of the proposed algo-
rithm is shown in Fig. 1.

7. Calibration of the proposed algorithm

The proposed algorithm was used to simulate the bearing
capacity of a strip and square footings in weightless soil. The foot-
ings were assumed to be rigid enough to create uniform pressure
on the supporting soil. The Mohr Coulomb (MC) failure criterion
with non associated flow rule was utilized in both cases. Local
rounding at the corners of the MC failure surface in the principal
stress space was used as described by Smith and Griffiths [15].
The material properties are summarized in Table 1. The calculated
load displacement behaviour for the two investigated cases was
established and compared with the conventional static analysis
using the same mesh and material properties.



Table 1
Material properties.

Cases Cohesion (Pa) Friction angle (�) Dilation angle (�) Poisson’s ratio Young’s modulus (Pa) Unit weight
(kN/m3)

Strip footing drained condition 35 20 0 0.3 1 � 105 0
Square footing drained condition 35 20 0 0.3 1 � 105 0
Square footing undrained condition 100 0 0 0.49 1 � 105 0
Square footing drained condition

(used in the numerical example)
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Fig. 3. Load–displacement relationships for the strip footing under drained
condition.
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Theoretically, the bearing capacity can be calculated as

qult ¼ cNc ð28Þ

where Nc is the bearing capacity factor expressed as (Prandtl [16])

Nc ¼ ðNq � 1Þ cot / ð29Þ

where

Nq ¼ tan2ð45þ /=2Þep tan / ð30Þ

For the drained case Nc = 14.83 and qult = 520 kPa; for the un-
drained case Nc = 5.14 and qult = 514 kPa.

7.1. Strip footing

The analyzed footing is 4 m wide and supported by Mohr Cou-
lomb drained material. Drained condition was carried out using
plane strain analysis. Considering the symmetry of the problem,
only one half of the footing was analyzed. Quadratic quadrilateral
elements with reduced integration (4 Gauss points) were em-
ployed in the simulation. The problem geometry and the finite ele-
ment mesh are shown in Fig. 2. In order to capture the failure load,
a uniform pressure of 200 kPa was first applied at the initial step.
After the stability condition (expressed by Eq. (9)) was reached,
the load was then increased to the next step. A tolerance value of
1e�6 was adapted in the present analysis. Seven load increments
of: 200 kPa, 300 kPa, 350 kPa, 400 kPa, 450 kPa, 480 kPa and
500 kPa were applied to approach the expected failure load. The
load was subsequently increased (1 kPa increments) up to failure
which is characterized by the numerical instability of the system.

In conventional implicit analysis, the applied load must be di-
vided into several increments to reach convergence and maintain
stability. If the stress state is far from the yield surface, the correct
stress state cannot be easily determined. To demonstrate the
robustness of the algorithm in modeling highly non-linear mate-
rial, the total load was applied in one single step and the displace-
ment results were compared with the previous multi-step analysis.

As shown in Fig. 3, the results of the dynamic relaxation analy-
ses are in good agreement with those obtained using the conven-
tional static analysis. Both of the simulations captured the
2 m 

12 m 

6 
m

 

Fig. 2. Finite element mesh used in the strip footing analysis.
theoretical Prandtl failure load (514 kPa). It can also be seen that
the single step loading has successfully produced the same
response.

7.2. Square footing

The bearing capacity of a square footing 4 m � 4 m was ana-
lyzed under both drained and undrained conditions. A schematic
of the problem geometry and the 3D finite element mesh (1728
elements) are illustrated in Fig. 4. Due to the symmetry, only 1/4
of the footing was modeled. The mesh in the vicinity of the footing
was refined to capture the rapid changes in displacement gradi-
ents. Smooth rigid side boundaries and a rough rigid base bound-
ary were used in the analysis.

The performance of four different finite elements was also
investigated in terms of speed and accuracy. The examined ele-
ment types are listed below:

1. Reduced integration twenty-node quadratic brick elements
(20N8I).

2. Mixed integration rule eight-node quadratic brick elements
(8NS8I) (Simo and Rifai [17]).

3. Reduced integration eight-node quadratic brick elements
(8N1I).

4. Reduced integration eight-node quadratic brick elements with
stiffness hourglass control (8NH1I) (Belytschko and Ong [18]).

The finite element meshes generated using the above elements
were further refined to examine the effect of the element size on
the calculated displacements. As shown in Fig. 5, the load displace-
ment curves exhibited little difference in all of the examined cases.
The failure loads captured by the different elements varied from
1.08 to 1.23 times of the Prandtl load. The calculated values are
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Fig. 4. Geometry and finite element mesh for the square footing.
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Fig. 5. Load–displacement relationships for the square footing: (a) drained condi-
tion and (b) undrained condition.

Table 2
Computation time (min).

Cases 20N8I 8NS8I 8NH1I 8N1I

Square footing drained condition 156 12 4 3
Square footing undrained condition 195 30 6 5
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Fig. 6. Comparison between constant and adaptive time step schemes.
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consistent with those reported by Salgado et al. [19] for rectangu-
lar footings. It is worth noting that the captured failure loads and
the load displacement behaviour of the 8NH1I elements varied
depending on the value of the anti hourglass parameter.

It was also found that the 8N1I element (usually unstable ele-
ment due to the deficient stiffness ranking) performed reasonably
well using the proposed algorithm. Similarly for the undrained
analysis where soil experienced constant volume deformation, no
hourglass displacements were observed. This can be explained by
the dominating shear failure of the supporting soils. The computa-
tional times for all examined cases are summarized in Table 2. It
can be seen that the 20N8I required the most time among all
examined elements, however, it provided an accurate failure load
prediction. 8NH1I and 8N1I elements are the most economical in
terms of analysis time meanwhile the accuracy is preserved. How-
ever, due to the formulation deficiency, the use of 8N8I is not rec-
ommended for collapse analysis. It is concluded that the 8NH1I has
maintained the balance between the calculation speed and the
accuracy and therefore is considered to be the best choice for the
above type of analysis.

8. Effect of using adaptive time step scheme

The effect of the adaptive time step in 2D and 3D analyses is
illustrated in Fig. 6. When the load applied was less than 45% of
the failure load, no significant effect was observed. However,
increasing the applied load to about 70% of the failure load resulted
in an increase in the number of iterations needed for convergence
in both the constant time step and adaptive time step schemes.
However, the constant time step scheme required 1.4 times the
number of iterations needed for the adaptive time step scheme.
The ratio slightly decreased as the applied load approached failure
and the difference between the two schemes decreased to about
1.2.



130 H.K. Dang, M.A. Meguid / Computers and Geotechnics 37 (2010) 125–131
9. Numerical example

A square footing supported by Mohr Coulomb drained material
is analyzed using the developed algorithm adopting the problem
geometry shown in Fig. 4. The soil unit weight is assumed to be
18 kN/m3 with friction angle of 30�. The material properties used
in the analysis are provided in Table 1. The bearing capacity of
the footing has also been calculated based on Terzaghi [20] bearing
capacity theory:

qult ¼ cNc þ qNq þ
1
2
cBNc ð31Þ

where q is the overburden pressure; c is the soil unit weight; B is
the footing width; Nc is derived by Michalowski [21] as follows:

Nc ¼ e0:66þ5:11 tan / tan / ð32Þ

Thus for sand with friction angle of 30, a value of 771 kN/m2 is
obtained for the bearing capacity of the square footing.

The same mesh in the previous section was used with 8NH1I
elements (see Fig. 4). An additional feature of the analysis is the
activation of the soil unit weight and the initial stresses assigned
at Gaussian stress points. The coordinates of each Gauss point
are calculated using the isoparametric property of the element

y ¼
X8

i¼1

Niyi ð33Þ

where N is the shape function of the brick element and y is the ver-
tical coordinate of the element nodes. Only the y coordinate is re-
quired in this case and the vertical stress ry is obtained after
multiplication by the soil unit weight (Table 1). The normal effec-
tive stresses rx and rz are obtained by multiplying ry by the earth
pressure coefficient at rest (K0) calculated using (Jaky, [22]):

K0 ¼ 1� sin / ð34Þ

The analysis consists of two stages: Geostatic stage and failure
load analysis. In the geostatic stage, the soil weight is activated
and the equilibrium is first obtained. In the next stage, the same
procedure used in Section 7 is employed to determine the failure
load.

As shown in Fig. 7, the calculated failure load is found to be
862 kN/m3, the ratio of the calculated value to the theoretical value
(approximately 1.12) agrees well with that reported by Ming and
Michalowski [23]. It is worth noting the analysis reported by Ming
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Fig. 7. Load–displacement relationships for a square footing on sand.
and Michalowski [23] employing the implicit methods required
the use of a cohesion value of 3.6 kPa in order to maintain conver-
gence whereas in the present study no such assumption was
needed to achieve convergence.

10. Summary and conclusions

An adaptive dynamic relaxation method applicable to geotech-
nical applications was developed and implemented in this study.
The use of diagonal mass and damping matrices with central dif-
ference time integrator has proven to be an effective numerical ap-
proach for problems involving material nonlinearity. Adjusting the
adaptive time step based on the changes in the element consistent
tangent stiffness resulted in a decrease in the number of iterations
needed for convergence by up to 40% compared to the constant
time step schemes. In the proposed algorithm, the time step and
damping values were automatically adjusted to achieve an optimal
convergence while maintaining the stability of the system. The
robustness and accuracy of the algorithm were demonstrated by
analyzing the bearing capacity of strip and square footings.

The performance of four different brick elements was also eval-
uated. The accuracy of the eight-node brick element with stiffness
hourglass control was found to be heavily dependent on the user
experience. Finally, since the proposed finite element algorithm
employs a explicit dynamic scheme that is commonly adopted in
Discrete Element analysis, it in can be easily combined with a Dis-
crete Element code in developing a hybrid Discrete-Finite element
suitable for geotechnical engineering applications.

Acknowledgements

This research is supported by a research grant from the Natural
Sciences and Engineering Research Council of Canada (NSERC). The
financial support provided by McGill Engineering Doctoral Award
(MEDA) to the first author is greatly appreciated.

References

[1] Felippa CA. Dynamic relaxation in quasi-Newton methods. In: Taylor C, Hinton
E, Owen DRJ, Onate D editors. Numerical methods for nonlinear problems,
Swansea; 1986. p. 27–38.

[2] Underwood PG. Dynamic relaxation: a review. In: Belytschko T, Hughes TJR
editors. Computational methods for transient dynamic analysis, North Holland,
Amsterdam; 1983 [chapter 5].

[3] Munjiza A. The combined finite-discrete element method. England: John Wiley
& Sons Ltd.; 2004.

[4] Xie YM. An assessment of time integration schemes for non-linear dynamic
equations. J Sound Vib 1996;192(1):321–31.

[5] Oakley DR, Knight NF. Adaptive dynamic relaxation algorithm for non-linear
hyperelastic structures Part I. Formulation. Comput Method Appl Mech Eng
1995;126(1):67–89.

[6] Sauvé RG, Metzger DR. Advances in dynamic relaxation techniques for
nonlinear finite element analysis. J Press Vessel Technol 1995;117:170–6.

[7] Metzger DR. Adaptive damping for dynamic relaxation problems with non-
monotonic spectral response. Int J Numer Method Eng 2003;56:57–80.

[8] Shoukry SN, William GW, Riad MY, McBride KC. Dynamic relaxation: a
technique for detailed thermo-elastic structural analysis of transportation
structures. Int J Comput Method Eng Sci Mech 2006;7(4):303–11.

[9] Siddiquee MSA, Tanaka T, Tatsuoka F. Tracing the equilibrium path by dynamic
relaxation in materially nonlinear problems. Int J Numer Anal Method
Geomech 1995;19(11):749–67.

[10] Tanaka T. Viscoplasticity of geomaterials and finite element analysis. In: Soil
stress strain behavior: measurement, modeling and analysis, geotechnical
symposium in Rome, March; 2006. p. 769–78.

[11] Kozicki J, Donze FV. Applying an open-source software for numerical
simulations using finite element or discrete modelling methods. Comput
Method Appl Mech Eng 2008;197(49–50):4429–43.

[12] Belytschko T, Mullen R. Explicit integration of structural problems. In: Finite
elements in nonlinear mechanics, TAPIR, Trondheim; 1978.

[13] Krieg R, Key S. Transient shell response by numerical time integration. Int J
Numer Method Eng 1973;17:273–86.

[14] Simo JC, Hughes TJR. Computational inelasticity. New York: Springer; 1998.
[15] Smith IM, Griffiths DV. Programming the finite-element method. 4th ed. New

York: Wiley; 2004.



H.K. Dang, M.A. Meguid / Computers and Geotechnics 37 (2010) 125–131 131
[16] Prandtl L. Uber die Eindringungsfestigkeit (Härte) plastischer baustoffe und
die festigkeit von Schneiden. Z angew Mathe Mech 1921;1(1):15–20.

[17] Simo JC, Rifai MS. A class of mixed assumed strain methods and the method of
incompatible modes. Int J Numer Method Eng 1990;29:1595–638.

[18] Belytschko T, Ong S. Hourglass control in linear and nonlinear problems.
Comput Method Appl Mech Eng 1984;43:251–76.

[19] Salgado R, Lyamin A, Sloan S, Yu HS. Two- and three-dimensional bearing
capacity of footings in clay. Geotechnique 2004;54(5):297–306.
[20] Terzaghi K. Theoretical soil mechanics. New York: Wiley; 1943.
[21] Michalowski RL. An estimate of the influence of soil weight on bearing

capacity using limit analysis. Soils Found 1997;37(4):57–64.
[22] Jaky J. Pressure in soils. 2nd ed. London: ICSMFE; 1948, vol. 1. p. 103–7.
[23] Ming Z, Michalowski RL. Shape factors for limit loads on square and

rectangular footings. J Geotechn Geoenviron Eng 2005;131:223–31.


	Evaluating the performance of an explicit dynamic relaxation technique in analyzing non-linear geotechnical engineering problems
	Introduction
	Governing equations and force description
	Time step equation
	Stability of time steps
	Optimal convergence
	Constitutive model
	Calibration of the proposed algorithm
	Strip footing
	Square footing

	Effect of using adaptive time step scheme
	Numerical example
	Summary and conclusions
	Acknowledgements
	References


